"); //-->
编者按:AAAI 是由美国人工智能协会(Association for the Advance of Artificial Intelligence)主办的人工智能领域顶级学术会议之一。今年的AAAI 大会将于2月22日-3月1日举办,微软亚洲研究院共有十余篇论文入选,涵盖概念漂移、平面布局自动生成、假新闻检测、视频分割、跨语言预训练、文本摘要、注意力机制、连续深度神经网络、领域泛化、在线影响力最大化等等人工智能的多个领域。今天,我们为大家精选了其中的12篇进行分享,并配有此前的论文分享直播视频,希望可以帮助大家更深入地了解人工智能领域的前沿进展!
01
基于数据分布生成的可预测概念漂移适应
论文链接:https://arxiv.org/abs/2201.04038代码链接:https://github.com/microsoft/qlib/tree/main/examples/benchmarks_dynamic/DDG-DA
在时序数据中,由于环境的不稳定性,数据分布常常会随时间变化,且这种变化通常被认为是难以预测的。这种现象被称为概念漂移(Concept Drift),它会导致在历史数据上训练的模型在概念漂移后性能下降。为了应对这一问题,此前的工作会检测概念漂移是否发生,然后调整模型以适应最近的数据分布。但是在很多实际场景中,环境的变化是有规律可预测的,即可预测的概念漂移(Predictable Concept Drift)。因此,可以对概念漂移的未来趋势进行建模,而不仅仅让模型适应最近的数据分布。
微软亚洲研究院的研究员们提出了一种新方法 DDG-DA 来预测数据分布未来的变化,然后利用预测的数据分布生成新的训练数据来学习模型以适应概念漂移,最终提升模型性能。
图1:DDG-DA 学习如何生成数据来最小化历史数据分布和未来数据分布的差异
具体来说,如图1所示,在时序数据中样本随时间产生,算法可以利用当前时刻已经产生的历史样本学习或调整模型用于未来一段时间的预测。由于历史数据的分布和未来数据分布存在差异,这会影响所学模型的预测性能,DDG-DA 则致力于缩小这种分布差距。DDG-DA 会输出历史数据的采样权重,基于该权重重新采样生成数据集,该数据集的分布会作为未来一段时间分布的预测。同时,研究员们还设计了一个和 KL-divergence 等价的分布距离函数来计算预测的分布和未来一段时间实际分布的距离。该距离函数具有可导的性质,因此可以利用它高效地学习 DDG-DA 的参数来最小化它预测的分布误差。在学习阶段,DDG-DA 先在历史时序数据上学习如何重采样数据;在预测阶段,DDG-DA 会定期通过重采样历史数据生成训练数据集,在 DDG-DA 生成的数据集上训练的模型将能更好地适应未来变化的数据分布/概念漂移。
如表1,研究员们在股价、电力负荷和日照辐照度三个真实场景预测任务和多个模型上进行了实验验证并且性能得到了显著提升,在同类方法中 DDG-DA 也取得了最佳性能。
表1:DDG-DA 和同类方法在不同场景下的对比
02
平面布局的层次化生成式建模
论文链接:https://www.microsoft.com/en-us/research/publication/coarse-to-fine-generative-modeling-for-graphic-layouts/
平面布局(graphic layout)在工作和生活中随处可见,如海报的布局、文档的布局、移动应用用户界面的布局等。设计一个美观的平面布局不仅需要过硬的专业知识而且需要花费大量的精力。为了辅助平面布局的设计,平面布局的自动生成(layout generation),即预测布局中各个元素的位置和大小,逐渐受到越来越多的关注。
现有的大多数模型会将平面布局抽象成一系列的元素,并直接预测每个元素的位置和大小。本文提出将平面布局切割为不同的“区域”(region),其中每个区域都可以看作是一个简单的布局且比整体布局包含更少的元素,并基于此设计了一种层次化的模型。
具体来说,研究员们将 VAE 中的****分解为两个步骤:第一个步骤为预测区域。由于平面布局中没有显式的包含区域的划分,本文设计了一种基于网格线的方法来抽取此步骤中的监督信息。第二个步骤为基于生成的区域,预测区域中每个元素的具体位置和大小。为了使模型能够将区域中元素的预测问题当作一个简单的布局生成问题,此步骤中的所有位置被转成了对于区域的相对位置。
图2:模型架构
大量的定性和定量实验证明,本文提出的方法优于现有方法,其优势在复杂布局生成上尤为突出。表2比较了不同模型的 FID 值,图3则比较了在不同复杂度的布局上各个模型的效果。更多定量和定性结果请参考论文。
表2:模型 FID 值比较
图3:不同复杂度的布局上模型效果比较
03
基于推理的假新闻检测
论文链接:https://arxiv.org/abs/2110.15064
目前假新闻检测方法以数据驱动的方式进行预测,充分证明了利用大数据进行假新闻检测的有效性。然而,现在仍缺少从推理的角度来做假新闻检测的研究。在心理学中,推理能力是指有意识地运用逻辑探索真理的能力,通常被认为是一种人类独有的能力。这种推理能力对提高假新闻检测的可解释性和准确性至关重要。比如,如果能让模型学会像人一样有逻辑地把微小的线索组织起来(图4),就能给假新闻检测方法带来强大的细粒度推理能力,从而提升准确性。
图4:判断新闻真假常常需要精细推理的能力。虽然图中四组证据看上去众说纷纭,但人类可以通过诸如 "property" 等微妙线索将它们在逻辑上联系起来,从而对文章得出更可信的结论。
图5:推理框架 FinerFact
在本文中,微软亚洲研究院的研究员们提出了一个通用的推理框架 FinerFact,用于对假新闻检测进行细粒度推理(图5)。FinerFact 遵循人类的信息处理模式,能够更好地反映人类的逻辑推理过程,增强了可解释性。同时,FinerFact 引入了一种基于 Mutual-Reinforcement 的方法来将线索进行排序,这使研究员们能够更好地了解哪些类型的证据对识别假新闻更重要,并为融入人类的知识经验提供基础。最后,FinerFact 引入了一个双通道的 Kernel Graph Network 建模不同类型线索之间的细微差异与影响。
表3:FinerFact 在 PolitiFact 和 GossipCop 数据集上的表现
大量实验表明,FinerFact 优于目前最先进的方法并能提供较强的可解释性(如表3所示)。除了提高准确性之外,FinerFact 还使人类能够理解其推理过程中的大部分内容。在 Case Study 中,FinerFact 不仅成功地识别新闻为假,而且对重要的证据、细微线索以及每个观点的预测分数都进行了详细解释(图6)。
图6:可视化 FinerFact 的推理过程:(a)Mutual Reinforcement Graph 中的 keyword 层,每个 keyword 的显著性表示为 keyword 的大小;(b) 在 Claim-Evidence Graph 进行细粒度推理。每种颜色表示新闻证据中的一个主题。
*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。